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ABSTRACT
Emerging on-volatile memory (NVM) opens an opportunity to
build durable data structures. However, to build a highly efficient
complex data structure like B+tree on NVM is not easy. We investi-
gate the essential performance bottleneck for NVM-based B+tree.
Even with a single-core CPU, the performance is limited by the
atomic-write sizewhich plays an essential role in the trade-off be-
tween the persistent overhead and keeping leaf node entries sorted.
For the multi-core setting, the overlapping of concurrency and
persistency is key to the system scalability.

Based on the analysis, we propose RNTree, a durable NVM-based
B+tree using the hardware transactional memory (HTM). Our way
of using HTM can actually address both problems mentioned above
simultaneously. (1) HTM can use cache-line granularity to provide
larger atomic-write size. Based on this, we propose a new slot-array
approach which traces the order of entries in the leaf nodes while
still reducing the number of persistent instructions. (2) With careful
design, RNTree moves slow persistent instructions out of critical
sections and proposes the dual slot array design, to extract more
concurrency. For single thread, RNTree achieves 1.44×/4.2× higher
throughput for single-key operations and range queries respectively.
For multiple threads, the throughput of RNTree is 2.3× higher than
state-of-the-art works.
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1 INTRODUCTION
Emerging non-volatile memory (NVM) technologies [1] are promis-
ing because they offer non-volatility, byte-addressability and fast
access at the same time. Empirical studies [2–7] suggest that NVM
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should be attached to the memory subsystem directly, accessed by
normal load/store instructions to avoid the overhead of the legacy
block-oriented file systems and data serialization/deserialization.

This paper focuses on building non-volatile B+tree which repre-
sents an important class of tree-based sorted structures. B+tree can
support find, range query as read only operations and insert,
remove, update as modify operations. Compared to other range
indexes, e.g., skip list, B+tree has smaller tree depth, better cache
locality and dense data layout. Thus, even B+tree was firstly intro-
duced for storage systems on disks, there are many works [6–9] on
B+tree for the NVM.

However, even the memory is non-volatile, data in the cache
hierarchy above the memory are transient. Transient data in CPU
caches can be persisted by either explicit cache line flush instruc-
tions, e.g., CLFLUSH, CLWB, or implicit cache eviction. Implicit cache
eviction is uncontrollable. The carefully ordered memory instruc-
tions in user programs might be reordered. Programmers usually
enforce the order by a cache line flush instruction followed by a
memory fence instruction, e.g., MEMFENCE. We can call such instruc-
tion compound as one persistent instruction as it flushes the data
from the cache to the NVM, prevents any re-order and waits until
the data are physically persisted. The persistent instruction incurs
non-trivial overhead. Most researches on NVM focus on how to
reduce persistent instructions as much as possible.

Traditional structure of B+tree does not make the best use of the
byte-addressability of NVM. A classic B+tree has large nodes (usu-
ally several kilos of bytes in each node) and requires items in each
node to be sorted for fast find and range query. Any insertion or
deletion of an item in the node needs the rewrite of the whole node.
It brings the problem of write amplification that one modification of
the data structure needs multiple writes. On disk, it is not a problem
as long as the size of the node does not exceed the size of one
disk block. On the contrary, due to the byte-addressability of the
NVM, write amplification incurs unnecessary performance penal-
ties. Some current works [6, 8, 9] try to solve this problem by using
append-only strategy. For example, NVTree [8] appends a log entry
at the end of the leaf node without sorting in each modify opera-
tion. But read-only operations have to scan the whole nodes. Other
work [7] tries to keep the order in the leaf node but requiring more
persistent instructions. There is a trade-off between the sorted
leaf node and the persistent write overhead. (Challenge 1.)

Persistent order also makes concurrent programming compli-
cated. It is hard to guarantee the crash consistency and the correct
concurrent access (linearizability) at the same time. Most of the
current works [7–10] only support single thread. FPTree [6] uses
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Table 1: Overview of RNTree vs. Recent Works.

Writes Sorted Concurrency
CDDS Tree L∗

√
×

NV-Tree 2 × ×

wBtree 4
√

×

FPtree 3 × Coarse grained
RNTree 2

√
Fine grained

the selective concurrency , i.e., the whole leaf node is locked when
applying a modify operation. Essentially, FPTree creates a critical
section to guarantee linearizability at first, and then use persis-
tent instructions to guarantee the crash consistency in the critical
section. This decoupled design is easy to implement, but far from
effective. When a modify operation is applied, other operations,
including read only operations, are blocked. How to reduce the
synchronization overhead is critical to improve the scalabil-
ity. (Challenge 2.)

To address the above challenges, this paper proposes RNTree
(RTM NVM B+tree), a high efficient and scalable NVM B+tree
implementation. The key to achieve high performance is through
hardware transactional memory (HTM) elegantly and carefully.

Challenge 1: To avoid the unsorted leaf node and persistent
write overhead, HTM is used because it has a much larger atomic-
write size than operands in normal instructions. The atomic-write
size represents the granularity that the CPU can guarantee the
atomicity when writing to underlying memory, usually at most 8
bytes. HTM guarantees that store operations within a single trans-
action are not written into memory sub-system until the transaction
commits successfully. Thus, we can increase the atomic-write size
from 8 bytes to a cache-line size (typically 64 bytes). HTM can help
to increase the atomic-write size as in previous works [11, 12]. With
the increased atomic-write size, it gets more chances to capture
the order information of entries in the leaf node. Meanwhile, two
persistent instructions are enough in amodify operation in RNTree,
one for the raw data and the other for the metadata while still keep-
ing the entries sorted. Using HTM for increasing the atomic-write
size can effectively solve the trade-off.

Challenge 2: To reduce the potential synchronization overhead,
we propose an overlapping design for concurrency control. Inves-
tigating the implementation details, a B+tree modify operation
consists of several steps after it reaches the corresponding leaf
node (regardless of different implementations): (1) Allocate a log
entry; (2) Write data in the entry; (3) Flush the data; (4) Update the
metadata. RNTree does not try to execute all these steps in one
critical section. Instead, it overlaps the concurrency control and
the crash consistency, so that slow flush step does not block others’
execution. Meanwhile, we propose the dual slot array design to
reduce the read-writer contention.

We summarize the main differences between RNTree and pre-
vious works [6–8, 10] in Table 1. Writes denotes the number of
persistent instructions needed for each modification. L* is the num-
ber of entries in the leaf node. Sorted denotes whether to keep the
leaf node sorted or not. Concurrency denotes whether or how to
support concurrent accesses. RNTree achieves the least number of

persistent instructions and keeping entries sorted in each leaf node.
RNTree has better scalability than existing systems.

The main contributions are as follows.
• Investigate the essential performance bottleneck for
the NVM-based B+tree. Small atomic-write size incurs the
trade-off between the higher persistent overhead and sorted
leaf nodes. Meanwhile, persistent instructions can bring se-
vere overheads, and naive implementation of concurrency
would make slow persistent instructions hurt the scalability.
• Solve the trade-off between the persistent overhead
and sorted leaf nodes. RNTree uses HTM to increase the
atomic-write size from 8 bytes to 64 bytes. A cache-line
size metadata is used to trace the order of entries in leaf
nodes. The number of persistent instructions is minimum
for modify operations while still keeping leaf nodes sorted.
• Extract more concurrency with overlapping the con-
current andpersistent algorithm, andpropose thenew
dual slot array design. RNTree overlaps the design of per-
sistency and concurrency, excludes the slow persistent step
out of the critical section. Meanwhile, RNTree adopts a more
friendly technique for read-only operations, while still guar-
antees the strictest consistent model, i.e., linearizability.

2 BACKGROUND
2.1 NVM Programming Model
The discussion about NVM technologies can be found in [1] as
well as how to benefit existing applications [7–10, 13]. We follows
the NVM.PM.FILE mode described by SNIA1. In this mode, NVM
devices are managed by a PM-aware (persistent memory aware)
file system [12, 14, 15], which can support direct access (DAX) with
mmap system call, providing direct access to the NVM through
load/store instructions. Applications should maintain the durability
and consistency of data. However, the carefully designed order in
applications can be easily broken by out-of-order cache evictions
in modern CPUs. To avoid unexpected eviction, one need to use
persistent instructions (CLFLUSH, MEMFENCE) to enforce the write
order. Though the access latency of NVM is much smaller than disk
or SSD, it still incurs up to 100 ns latency [1]. We need to reduce
the number of persistent instructions to boost the performance.

Atomic-write size is the size that CPUs can guarantee the atom-
icity when writing to the NVM. It mainly determines the number
of persistent instructions required. Additional persistent orders are
mainly caused by the small atomic-write size, e.g., current x86 CPUs
only support 8 bytes as the atomic-write size. Though the flush
can occur in cache-line size (64bytes), when to flush is uncontrol-
lable. Previous works use undo logs or redo logs [2, 3, 5, 16], which
require careful design and additional orders to achieve atomicity.

2.2 Hardware Transactional Memory
Hardware Transactional Memory (HTM) is a tool that simplifies
concurrency programming by allowing a batch of load and store
instructions atomically visible. There are several commercially avail-
able HTM implementations such as Intel Restricted Transactional

1https://www.snia.org/sites/default/files/technical_work/final/
NVMProgrammingModel_v1.2.pdf
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Memory (RTM). We use RTM in this work, but our algorithms are
valid for other HTM implementations.

There are several limitations when using HTM and NVM si-
multaneously. At run-time, RTM buffers the modified data in L1
cache before commits. Thus, one of the major limitations is that
a transaction will abort if the working set size (i.e., data read and
write in the transaction) exceeds the L1 cache size [13]. Another
limitation is that cache-line flush instructions (e.g. CLFLUSH, CLWB)
inside a transaction will always abort the transaction. Therefore, a
normal mutex lock can be used to replace HTM when executing
cache-line flush instructions to flush data from the cache to NVM.

The most required characteristic of HTM for our work is that
HTM can increase the write-atomic size to 64 bytes (size of a cache-
line). HTM guarantees that a dirty cache-line incurred by a store
instruction remains in the cache, without flushing to the memory.
If the system crashes before the transaction finishes, the dirty data
will be lost without hurting the consistency of the NVM.

3 PERFORMACE ANAYSIS
In this section, we introduce several related works and discuss trade-
offs of designing the persistent B+tree from different perspectives.

3.1 Existing Persistent B+tree
CDDS B-Tree (Consistent and Durable Data Structure B-Tree) [10]
is a multi-version B-tree. When a tree node is updated, a new copy
will be created and tagged with a new version without overwriting
the original entry for recoverability and consistency. CDDS B-tree
maintains entries sorted and suffers from the write amplification.

NVTree [8] reduces the expensive persistent instructions by
employing an append-only strategy. When a new entry is inserted,
the data are appended at the end of the leaf node without keeping
entries sorted. Only two persistent instructions are needed, one for
the entry and the other for the count of entries. Without sorted leaf
nodes, find and range query operations have to scan all logs.

wB+Tree Compared to NVTree, wB+Tree [7] proposes to sort
the entries via the slot array holding the actual positions of entries.
An additional valid bit is used to identify the states (valid or not) of
the slot array if the slot array is larger than 8 bytes and cannot be
updated atomically. Thus, wB+Tree requires another two persistent
instructions to set/reset the valid bit for each modify operation,
leading to higher write overhead.

FPTree Similar to NVTree, FPTree [6] employs an append-only
strategy for leaf nodes. One-byte key hash is used to reduce the
cache miss in find, although leaf nodes are still unsorted. FPTree
uses HTM to support concurrent accesses. Traversing from the tree
root to the leaf node is wrapped by HTM. After reaching the leaf
node, an explicit mutex lock is acquired for the whole leaf node
operation. According to our investigation, operations on the leaf
node take more than 70% time in a request. Thus, locking the whole
leaf node would incur high scalability penalties.

In the following, we start with the analysis of different design
trade-offs before making the design decisions for our RNTree.

3.2 Write Amplification vs. Sorted Leaf Node
The primary challenge in the NVM programming is caused by high
overhead of persistent instructions. Write amplification should be

avoided as much as possible. The extra persistent instructions are
essentially caused by the small atomic-write size in instructions. If
the data size is larger than the atomic-write size, it is unavoidable to
split the operation into several steps. As system could crash at any
point of the execution, there must be at least one extra state variable
indicating the running stage before the crash. The wB+tree takes
this approach, using a valid bit to mark the validity of the slot array,
which needs 4 persistent instructions for each modify operation.
For example, each insert operation needs to: (1) append a log at
the end of the leaf node, and flush the log; (2) set the valid bit as false
and flush the valid bit;(3) insert a new slot and keep the slot array
sorted, flush the new slot array; (4) set the valid bit as true and flush
the valid bit. After the system crash, if the valid bit is true, wB+tree
uses the slot array directly. Otherwise, wB+tree uses key value (In
the rest of the paper, we will use acronym KV for representing key-
value pairs) entries in logs to recover the slot array. This strategy
keeps crash consistency for wB+tree, but expensive.

On the contrary, otherworks relax the property of sorted leaf node
to reduce the write amplification. Instead, they apply the append-
only strategy. Such design writes and flushes logs first, and then
atomically modifies and flushes the metadata whose size is limited
to 8 bytes. The access to the data is guided by the metadata. The old
and new versions of metadata both represent consistent states. Thus
no extra logging and shadowing are required. For example, in the
NVTree, the metadata is the log length counter. In the FPTree, the
metadata is the bitmap, in which each bit represents a used log entry.
It is evident that such small atomic write size cannot capture the
order of entries in a leaf node. Thus, we need to solve the trade-off
between the persistent overhead and sorted leaf nodes.

3.3 Conditional Write vs. Append-only
The widely adopted append-only strategy introduced before is not
friendly to support conditional write. Conditional write means an
insert succeeds only if there is no data record with the same key,
while an update or delete operation succeeds only if there is a
record that has the same key. This property is critical if B+tree
serves as primary keys or the unique constraint is applied. Condi-
tional write is the core feature for relational databases and many
key value stores[17, 18].

To support the conditional write, NVTree and FPTree have to
scan all logs in the leaf node to check the existence of a key. Our
experiments show that the unsorted leaf node incurs about 19%
overhead to provide conditional write for modify operations. We
should consider how to support fast conditional write.

3.4 Easy Programming vs. High Scalability
Multi-threading is the key to saturate the NVM hardware, but none
of the previous works does it sufficiently well. Most of the cur-
rent works [7, 8, 10] do not support multi-threading because of its
complexity. FPTree [6] can support concurrent accesses by locking
the whole leaf node before modifications. Logs and metadata are
flushed inside critical sections protected by locks. Such decoupling
approach makes the concurrent programming easier but potentially
limits the scalability. Coarse-grained lock behaves worse in NVM
than in DRAM because persistent instructions consume order-of-
magnitudes more CPU cycles than normal instructions. Putting
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Figure 1: Data Layout of Leaf Nodes.

persistent instructions inside a critical section will significantly
prolong the time inside the critical section, possibly leading to
higher contention. According to our evaluation, the throughput of
FPTree drops an order of magnitude slower under skewed work-
loads. Thus, even more programming efforts are required, we need
to consider reducing the influence of persistent instructions
on multi-threading.

3.5 Strict consistency vs. More concurrency
Consistent models for concurrent objects on NVM are different
from their counterparts on DRAM. Programmers have to take two
aspects under considerations simultaneously: persistent order for
the crash consistency, and logic order for the correct concurrent
control of multiple threads. The former makes sure that the data
structure can be recovered to a consistent state at any point of the
execution after crash. The later makes sure that concurrent accesses
do not break the data structure and should return correct results,
e.g., mostly linearizability [19]. Data structures are said to have
durable linearizability [20] if any concurrent execution is similar to
a sequential execution even with system crashes.

The difficulty of concurrent programming of NVM is that crash
consistency and linearizability are not composable. If an algorithm
is linearizable (not considering crashes), and is crash consistent for a
single thread, it might not have durable linearizability. The NVTree
is such a case. When an item is inserted (updated, or deleted) in
the NVTree, a log entry is appended. The counter of log entries
denoted as nElement is increased by an atomic add instruction. Find
operation would scan all log entries in the leaf node within the
boundary of nElement to find the exact key, without blocking any
ongoing modifications. However, the draft algorithm in the paper
can incur a read-uncommitted anomaly. A write thread increases the
nElement but without flushing, and a concurrent read thread reads
the new nElement and returns the result based on the new nElement.
Suppose at this point the system crashes. After recovery, nElement
is stale as if the writer thread has not executed. In this case, the
read thread returns a value that does not exist in the tree, breaking
the linearizability. In some weaker consistent models, this read-
uncommitted anomaly is allowed for better performance. But the
durable linearizability is the most desirable consistency model for
NVM and easiest for programmers to write correct codes. FPTree
and RNTree both have durable linearizability. Thus, it is critical
to extract more concurrency with strict consistency model.

4 RNTREE DESIGN
RNTree tries to deal with the challenges analysed before. Specifi-
cally, (1) RNTree solves the trade-off between persistent overhead

and sorted leaf node, which also solve the conditional write prob-
lem. (2) RNTree overlaps persistency and concurrency, moving the
persistent instructions outside critical sections, effectively reducing
the contention. (3) RNTree supports durable linearizability, i.e., the
strictest consistency model. In this section, we present the design
of RNTree to achieve these goals.

Similar to other NVM based B+tree [6, 8], we store all leaf nodes
in NVM, and all internal nodes in volatile DRAM. Storing internal
nodes in DRAM can reduce the overhead of tree re-balancing, and
is friendly to HTM because cache line flush instructions are omitted.
If system crashes or reboots, internal nodes can be reconstructed
from leaf nodes.

4.1 Cache-Line Size Slot Array
RNTree uses the cache-line size slot array to increase the atomic
write size for the metadata. An insert or an update operation ap-
pends a log at the end of the KV area for the leaf node. An indirect
slot array remembers the sorted order of KV entries. Figure 1 shows
the data structure of a leaf node. Each row represents a cache line.
The first cache-line stores auxiliary data, including nlogs (the num-
ber of logs allocated but may not be persisted), plogs (the number
of persisted logs), version ( the leaf node version ) and next (the
pointer to the next leaf node). The second cache-line stores the
slot array. The first byte stores the length of the slot array (4 in
the figure). The rest 63 bytes record the order of log entries. For
example, the smallest key is stored in Loд[3]. Log entries start from
the third cache line, and they are aligned to cache-line size. The
indirect slot array can support binary search for find or range
query operations. Note that the slot array and log entries are crash
consistent. Variables like nlogs and plogs are not. But they can be
recovered from the surviving data in the NVM.

If all modifications on the slot array are wrapped in an HTM
transaction, the slot array can be flushed to NVM atomically after
the transaction commit. Step (2) and step (4) in wB+tree (described
in Section 3.2) can be eliminated. In the case of system crashes, the
slot array persisted in NVM is either in the old state or in the new
state. The leaf node is always in a consistent state. Thus, only 2
persistent instructions are required.

4.2 Overlapping Persistency and Concurrency
A modify operation needs four steps: (1) allocate a log entry; (2)
write data in the log entry; (3) flush the log entry; (4) update the
metadata. We test the CPU cycles consumed by all steps and find
that the flush step consumes most CPU cycles in amodify operation.
Previous works use the decoupling design that includes all steps in
one critical section. Such design is easy to implement, but brings a
considerable overhead. Long time spent in critical sections hurts
the concurrent performance, especially for skewed workloads.

We investigate the four steps from the view of persistency and
concurrency. (1) The log allocation step requires concurrency con-
trol; (2) The data write step is an ordinary code block and requires
neither concurrency control nor persistency; (3) The log flush step
requires persistency; (4) The metadata update step requires concur-
rency control.

As we can see, different steps have different requirements and we
can apply an overlapping design for persistency and concurrency.
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Only the first step and the last step require concurrency control.
We use a compare-and-swap (CAS) instruction to allocate correct
log entry for each thread, and a spin-lock to protect the update of
metadata. Mutiple thread can flush logs in parallel. By overlapping
the code for persistency and concurrency, the costly log flushing is
moved out of the critical section and never blocks other threads.

4.3 Dual Slot Array
Because of read-uncommitted anomaly explained in Section 3.5,
reader-writer contention cannot be solve easily. Readers can not
see the modified slot array before it is flushed. There are two naive
ways to deal with this problem: (1) Lock based: readers and writers
use the same lock; (2) Version based: Writers increase the version
number after each update. Readers check the version of the leaf
node before and after the read. The reader will retry if the version
has changed. None of the above methods is efficient.

We propose a dual slot array design. There are two slot arrays in
a leaf node, one is transient, and the other is persistent. A writer will
firstly persist the KV (step1), then modify and flush the persistent
slot array (step2), and finally update the transient slot array (step3).
Readers would use the transient slot array to read data. Only when
a reader reads the transient slot array after step3, it will get the new
data. The new data must be persisted here. Otherwise the reader
will get the old data. Thus, the transient slot array always represents
persistent data, avoiding the read-uncommitted anomaly. Dual slot
array makes it possible to execute read and modify operations
concurrently.

5 IMPLEMENTATION
5.1 Synchronization Building Blocks
RNTree implementation uses HTM for concurrent control when-
ever possible. Spin lock is still needed because persistent instruc-
tions will abort hardware transactions. Special data structures are
designed for supporting synchronization. Similar to Masstree [21],
an integer value is used to represent both version and lock, as in
Figure 2. The lock bit is used by modify operations, and splitting
bit is set when the leaf node is being split. We have built several
helper functions for synchronization: the function lock uses a CAS
instruction to set the lock bit, and the function unlock reset the
lock bit. The function setSplit and unsetSplit sets/resets splitting bit
respectively. The version number is increased when the splitting
is finished. The function stableVersion returns a stable version, i.e.,
returns the version number when the leaf node is not splitting.

RNTree provides several low-level functions wrapped by HTM
in Table 2. These functions can be considered as atomic instructions,
and are the building blocks for implementing operations for data
structures. Intel threading building blocks (TBB) library is used to
implement these functions.

version number splitting lockversion

0 31 3230

Figure 2: Layout of the Leaf Version.

5.2 Basic operations
5.2.1 Insert. Algorithm 1 shows the insert operation using three
steps. (1) It directly traverses the tree to find the leaf node by
htmTreeTraverse (line 2). (2) After reaching the leaf node, a lock-
free algorithm is used to allocate a blank entry (line 3). Algorithm 2
shows how to allocate a log entry. It returns NULL if there is no
log entry available. Specifically, the variable nlogs points to the
next entry to be allocated. A CAS instruction is used to atomically
increase the nlogs. Each thread will get its specific entry slot with-
out interfering each other. It is possible that there is no free log
entry in the current thread because the leaf node is full and being
split in another thread. Current insert operation has to restart the
traverse from the root node again (line 5), hopes that the split pro-
cedure completes then. (3) After the KV is persisted, the slot array
is updated inside an HTM transaction and keeps entries ordered.
Because the cache-line flush is atomic, the slot array is always
consistent in NVM regardless when the system crashes.

Algorithm 1 Insert(K key, V value)
1: while True do
2: leaf = htmTreeTraverse(key);
3: entry = allocateEntry(leaf);
4: if entry == NULL then
5: continue;
6: end if
7: leaf.KV[entry] = (key, value);
8: Persist(leaf.KV[entry]);
9: lock(leaf);
10: htmLeafUpdate(leaf, key, entry, false);
11: Persist(leaf.slot);
12: htmLeafCopySlot(leaf);
13: leaf.plogs++;
14: if leaf.plogs == LeafNodeCapacity-1 then
15: Split(leaf);
16: end if
17: unlock(leaf);
18: return;
19: end while

Algorithm 2 allocateEntry(LeafNode leaf)
1: entry = leaf.nlogs;
2: if entry >= LeafNodeCapacity then return NULL;
3: end if
4: while CAS(&leaf.nlogs, entry, entry+1) == false do
5: entry = leaf.nlogs;
6: if entry >= LeafNodeCapacity then return NULL;
7: end if
8: end while
9: return entry;

RNTree always uses the slot array as the source-of-truth. Line 10
in Algorithm 1 is the atomic turning point. Before this point, the
slot array contains the old data. After this point, the new slot array
is persisted. Because old log entries are not overwritten, the slot
array will never point to invalid entries. htmLeafCopySlot is used
to copy the persistent slot array to the transient slot array (line 12
in Algorithm 1).
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Table 2: HTM Functions

Function Description
(Leaf) htmTreeTraverse(K) Traverses from the root node and returns the leaf node whose range covers the

key.
(bool) htmLeafUpdate(leaf, K, entry, exist) Updates the slot array in the leaf node. The parameter K denotes the key, entry

denotes the location of the KV entry, exist denotes whether the key should exist in
the leaf node, supporting conditional write.

void htmLeafCopySlot(leaf) Copy the transient slot array from the persistent slot array.
(int, SlotArray) htmLeafSnapshot(leaf) Takes a snapshot of the slot array of the current leaf node.
void htmTreeUpdate(oldLeaf, newLeaf, separator) Updates internal nodes, inserts a new leaf node after the old leaf node, separated

by the separator.

At the end of insert operation, the full leaf node may trigger
split (Algorithm 3). In case of system crashes during splitting, we
first log the whole leaf node in a pre-defined thread-local storage
(undo logs). Then a new leaf node is allocated. All key value pairs
are divided into the old leaf node and the new leaf node. In the
end, an HTM function htmTreeUpdate is used to update the parent
internal node. The version number is increased after each split.

Algorithm 3 Split(LeafNode leaf)
1: setSplit(leaf);
2: logLeaf = leaf; Persist(logLeaf);
3: newLeaf = NewLeafNode();
4: split = leaf.slot[0]/2;
5: splitKey = leaf.kv[split].key;
6: newLeaf.slot[0] = leaf.slot[0] = split;
7: for i in [0, 1, ..split − 1] do
8: leaf.slot[i+1] = newLeaf.slot[i+1] = i;
9: leaf.kv[i] = logLeaf.kv[leaf.slot[i+1]];
10: newLeaf.kv[i] = logLeaf.kv[leaf.slot[i+1+split]];
11: end for
12: newLeaf.next = leaf.next;
13: leaf.next = newLeaf;
14: Persist(newLeaf); Persist(leaf);
15: unsetSplit(leaf);
16: htmTreeUpdate(leaf, newLeaf, splitKey);
17: free(logLeaf);

5.2.2 Find. The find operation is in Algorithm 4. After reaching
the corresponding leaf node, a snapshot of the transient slot array
is taken. Then, the binary search is applied on the snapshot. We
intentionally avoid the binary search inside the HTM section to
reduce the size of read-set for one HTM transaction, so as to re-
duce the possibility of transaction abort. The version numbers are
fetched before and after find. If versions do not match, find needs
retry. Unlike FPTree, RNTree rarely traverses again from the root
node, unless the current leaf node has been splitted. FPTree has to
abort and retry if the current leaf node is updating, which is more
frequent than splitting. RNTree gains the performance benefit of
find from the dual slot array. The dual slot array design makes the
increasing of the version number from each modification to each
split, effectively reduce the chance of retry. If the leaf node is not
being splitted, find can be considered as non-blocking.

Algorithm 4 Find(K key)
1: while True do
2: leaf = htmTreeTraverse(key);
3: v = StableVersion(leaf);
4: N, slotArray = htmLeafSnapshot(leaf);
5: res = binarySearch(leaf.kv, slotArray, N);
6: if StableVersion(leaf) != v then
7: continue;
8: end if
9: end while

5.2.3 Update and Remove. Update is similar to insert. The up-
dated entry will be appended to the end of the log area in the leaf
node. The slot array is modified accordingly. Since obsolete entries
are still kept in the log area, the number of active KV pairs (indexed
by the slot array) may be smaller than the log entries allocated.
The obsolete entries are recycled during split. If the active entries
are less than half of the capacity of a leaf node, a special purpose
split is invoked to replace the old leaf node with a new one (not
displayed in Algorithm 3).

Algorithm 1 can also be used to describe update. If conditional
write is not supported, insert and update are the same. If condi-
tional write is supported, the only difference is in last parameter for
the function htmLeafUpdate, false for insert and true for update.

The remove operation is simpler than update. Remove operation
only needs to update the slot array in the leaf node.

5.2.4 Range query. The implementation of range query is straight
forward. With provided start key and a filter function, the start
item will be firstly located and the scan can proceed following next
pointers until the filter function returns true. It is not clear how to
implement range query in the existing works with unsorted leaf
nodes[6–8]. A straightforward way is to sort each encountered leaf
node. But sorting incurs several times higher latency.

5.3 Coordination Analysis
In this section, we discuss the correctness of RNTree under the
multi-threading setting.

5.3.1 writer-writer coordination. Essentially, RNTree can be con-
sidered as a persistent linked list, i.e., leaf nodes, and a volatile
N-ary tree, i.e., internal nodes. Leaf nodes can also be divided into
log area, which contains the real KV data, and other auxiliary data,
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Figure 3: In each sub-graph, the top half denotes a possible
concurrent execution history, the below part denotes its cor-
responding linearizable history. The red and green blocks
denote lock acquiring and releasing respectively, while a
line denotes a sub-procedure. S1: write & flush the KV entry;
S2: write & flush slot array; S3: update transient slot array;
S4: read transient slot array; S5: read KV entries.

including the slot array for keeping the sorted leaf node property.
Writers in RNTree coordinate through several techniques for each
part of data respectively: Any modification to internal nodes are
protected by HTM functions. Any modification to the leaf node has
to acquire the lock except the log entry allocation. A CAS instruction
is used, instead. Thus, log flushes can run in parallel.

Figure 3(a) gives an example of two concurrent writers and how
they can be linearized [19]. In this case, writer 1 and write 2 get their
log entries, write and flush data simultaneously. Then they compete
for the spin lock of the leaf node, and modify the structure of the
leaf node one by one according the order they get the lock. The
concurrent execution history is equal to a a sequential execution
history indicated in the below half in Figure 3(a). That is, writers
are linearized by the order they get the lock, no matter when they
write and flush log entries.

Note that even updating slot arrays in leaf nodes is wrapped
by an HTM function, it is protected by the spin lock from other
concurrent writers. The HTM function here is for the cache-line
size atomicity.

5.3.2 reader-writer coordination. Readers and writers may conflict
in two cases: (1) one thread is reading the transient slot array when
another thread is trying to update it. We solve this conflict by HTM.
(2) After a reader gets the correct slot array and read logs according
to it, another thread splits the leaf node and modifies log entries2.
We use a classical optimistic concurrency control mechanism for
this kind of reader-writer coordination. Every reader will get two
version numbers before and after its computation respectively. If
the versions are not matched, the reader has to retry. The version
changes only when splitting. Thus, readers do not have to retry
even with simultaneous writers, as long as there is no splitting.

It is oblivious that readers never see un-committed data due to
the dual slot array design, but they may fail to read committed data.
It is still linearizable [19]. Figure 3 gives an example. The writer
updates and flushes the persistent slot array, but it has not updated
the transient slot array. The reader will use the old transient slot

2Note that an ordinary update (without splitting) would not conflict with concurrent
readers, because it only allocates a new log entry and never overwrites old log entries,
shown in algorithm 2.

array and can not see the data from the writer. In this case, logically,
the reader happens before the writer. As a conclusion, a reader is
linearized before a writer if it does not read the transient slot array
the writer is about to update, even though the writer has already
flushed the KV entry.

5.4 Recovery
All internal nodes are sorted and stored in DRAM, that they are
lost after crash. Recovery reconstructs the internal nodes from the
persisted leaf nodes stored in NVM. The recovery operation scans
all leaf nodes, resets their lock, nlogs, plogs values and retrieves the
greatest key in each leaf node to rebuild the whole tree. If some
nodes need to split, e.g.crash during split, the recovery helps to
complete the split. The pointer to the left-most leaf node is stored
in a well-known static address for starting the recovery.

6 EVALUATION
As previous works are not open-sourced, for evaluation, we re-
implement these works as faithfully as possible3. The structures
for all the internal nodes are the same in all implementations. The
only difference is the design of the leaf node.

(1) For NVTree, we abandon its static internal nodes architec-
ture, which leads to rebuilding the whole tree and higher
write overhead.We also optimize update for NVTree. NVTree
appends a remove log and an insert log for an update op-
eration. We omit the remove log to reduce memory flushes.
And during read, we scan the log area from back to front.
This strategy has the same semantic, but reduces half of the
memory writes.

(2) There are two versions of wB+tree: (1) wB+tree-SO the
size of the slot array is just 8 Bytes, no more than write-
atomic size. Thus, extra persistent instructions introduced in
Section 3.2 can be omitted. But it can only store 7 KV entries
in each leaf nodes, leading to long tree depth and frequent
tree re-balancing. (2) wB+tree the size of the slot array is
64 Bytes, exceeding the write-atomic size, requiring extra
persistent instructions for the valid bit.

(3) FPTree have to support conditional write because it uses
a bitmap to identify occupied logs, and log entries can be
reused. FPTree cannot distinguish two logs with the same
key. Thus, it must support conditional write to avoid this
case, i.e., there are no two same keys in the FPTree. On
the contrary, the basic implementation of NVTree does not
support conditional write. If it has two logs with the same
key, it chooses the latest log, as new logs always append
after old logs.

FPTree and RNTree support multi-threading, while NVTree and
wB+tree only support single-threading.

6.1 Experimental Setup
Our evaluation consists two parts. (1) Single thread evaluation
compares performance of basic operations: insert, find, update,
remove and range query. We investigate how large atomic-write
size used can satisfy all operations. (2) Multiple threads evaluation

3Our codes are available at https://github.com/liumx10/ICPP-RNTree

https://github.com/liumx10/ICPP-RNTree
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Figure 4: Throughput of Find/Insert/Update/Remove and
Mixed Operations on Single Thread.

runs the test with various number of threads on well-known YCSB
benchmarks for evaluating scalability.

Evaluation Setup. All evaluations use Dell PowerEdge R740
with two Intel Xeon Gold 6126 processors supporting TSX and
CLWB, with 12 16GB NVDIMM-N chips. These NVDIMM-Ns are
grouped by two 6-way interleave sets, i.e., the capacity of each
set is 96 GB. The read/write lantency of the interleaved NVM are
84/140 ns, and the read/write bandwidth are 61/34 GB/s respectively.
The persistent memory is managed by ext4 file system with the
DAX flag and mapped into a pre-designated memory address of the
application program. The results are the average of 10 runs.

6.2 Single-thread benchmarks
This evaluation firstly warms up the tree with 16 million KVs. Each
leaf node contains at most 64 (7 in wB+tree-SO) KVs. We have tried
other size of leaf nodes, but the size of 64 performs the best in
general. Each operation runs for 5 seconds except remove. Remove
operation runs for 100ms. Otherwise, all nodes in the tree will
be removed. There is also another mixed operation benchmark in
which each operation takes the same proportion. Figure 4 shows
the results.

6.2.1 Find. RNTree andwB+tree perform the best in find. NVTree
and FPTree suffer from slow linear search. RNTree can run 12%
faster than NVTree. The performance improvement comes from the
leaf nodes since all internal nodes are sorted. FPTree is even slower
than NVTree because it has to calculate hash code when searching.
wB+tree-SO is slow because it has at most 7 KV entries in each leaf
node and can not benefit from the binary search. The small leaf
node capacity also leads to longer tree depth, which means slow
tree traversal.

6.2.2 Insert. wB+tree/FPTree/NVTree have 4/3/2 persistent in-
structions respectively in the insert operation. The results in Fig-
ure 4 show that the performance is consistent with the number
of persistent instructions. NVTree is a little slower than RNTree
because of its slow splitting. NVTree has to sort all data in the node
before splitting. wB+tree-SO also has 2 persistent instructions for
each insert, but its performance is the worst. The reason is its
small leaf node capacity leading to more frequent splitting.

Figure 5 shows the overhead of NVTree with the modification for
supporting conditional write. It has to scan all logs before inserting
or updating. There is 19% slow down compare to its original version
without conditional write. RNTree can support conditional write

Figure 5: Conditional overhead of NVTree

Figure 6: Range query performance with different number
of KVs handled in a range query operation.

Figure 7: Recovery time for RNTree with different tree size.

with no overhead as it naturally finds the position of the key with
the help from slot array.

6.2.3 Update and remove. update and remove have similar prop-
erty as insert. The performance is mainly determined by the
number of persistent instructions. For example, FPTree has higher
remove throughput than other trees as it only has one persistent
instruction in a remove operation, i.e., resetting the bitmap.

6.2.4 Mixed benchmark. As short summary, RNTree has the best
(or one of the best) find, insert, update performance and fair
remove performance. We also did the mixed operation benchmark
with each operation comprises 25% of all operations. RNTree can
run faster than other works by 25% ∼ 44%.

6.2.5 Range query. Different from the find operation, the perfor-
mance of range query operation does not only depend on traversing
the tree. Instead, it mainly depends on how fast it scans leaf nodes
after reaching the first leaf node containing the start key. The per-
formance of range query mainly depends on how many KVs it
queries each time.
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Figure 8: Throughput of different trees with increasing number of threads.

Figure 9: Latency in different request frequency. There are 24 concurrent workers submitting requests with 50% read and 50%
update. Keys’ distribution obeys Zipfian’s law. The Zipfian coefficient is 0.8.

RNTree does the scan by applying the filter function on each
entry in leaf node. NVTree and FPTree meet some difficulties be-
cause of their unsorted leaf nodes. Each leaf node needs to be sorted
first. Our implementations use the sort algorithm in C++ Standard
Library. Figure 6 shows the results of range query operations. Here,
the throughput means how many range query operations get ex-
ecuted. RNTree is about 4.2× faster than NVTree and FPTree for
different number of queries.

6.2.6 Recovery. When reboot, the internal nodes will be recon-
structed from the persisted leaf nodes (reconstruction). If RNTree
has to recover from crashes, non-critical data like nlogs are incon-
sistent. They can be reconstructed by other persistent data i.e. the
slot array and logs (crash recovery). For example, to reset nlogs, the
number of log entries allocated, it needs to scan the slot array to
find the max index of log entries.

We evaluate the recovery performance of RNTree for different
tree sizes. Figure 7 depicts the results. Recovery time or reconstruc-
tion time has a linear correlation to the tree size. The time of crash
recovery is about 60% higher than that of reconstruction.

6.3 Concurrent benchmarks
The concurrent benchmarks focus on the scalability comparison
between RNTree and FPTree (the only existing work for multi-
threading). We have two versions of RNTree, with or without the
dual slot array design. The dual slot array design can benefit read
operations, but requires extra instructions to copy and protect the
slot array for write operations. In the following, we denote RNTree
as RNTree without the dual slot array design, and use RNTree+DS
for RNTree with the dual slot array design. We use YCSB-A [22]

as the default benchmark, which is composed of 50% update and
50% find operations. To eliminate the possible variations, we bind
every thread to exactly one core and fix the CPU frequency.

6.3.1 throughput. Figure 8 shows the result of scalability. We test
three cases: (a) YCSB-A benchmark with uniform workloads, (b)
YCSB-A benchmark with skewed workloads. The skewed work-
load obeys Zipfian’s law [23] with coefficient 0.8. We hash keys to
distribute hottest keys to different leaf nodes. (c) Skewed read inten-
sive benchmark, with 90% reads and 10% updates. In Figure 8(a), we
observe that in uniform workloads, both FPTree and RNTree has
linear scalability, which agrees with the result reported in FPTree
paper. In a tree-like structure, as modification usually happens in
low-level nodes, workloads with uniform distribution have rare
contentions.

However, workloads in the real world are usually skewed. In
Figure 8(b), FPTree can only scale to 4 threads. FPTree has two
main problems: (1) For update operation, it has to lock the leaf
node during the whole operation. In skewed workload, hot leaf
nodes will always be locked, (2) For find operation, it will always
abort the transaction and traverse from the root again if the leaf
node is locked by another update operation. Thus, find operation
has a much worse performance with more conflicts. The RNTree
and RNTree+DS have about 1.8× higher throughput than FPTree
with 24 threads.

Figure 8(c) depicts the performance of read intensive workload.
FPTree still can not scale well, as its find can be easily broken
by update operations. RNTree has the same problem. But RNTree
performs better, because it spends less time in critical sections, and
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Figure 10: YCSB-A performance (8 threads) with increasing
contention controlled by the Zipfian coefficient.

update operations have less possibility to break find operations.
Different from others, RNTree+DS has near linear scalability.

6.3.2 Latency. The advantage of dual slot array design is not totally
exposed in the throughput experiments. As the benchmark requires
all workers to submit requests one by one, faster read incurs more
frequent update, leading to more contentions, which conversely
reduce the total throughput. In latency experiments, we limit the
frequency of each workers submitting their requests and analyze
the latency of read and update operations. With the increase of
request frequency, the latency increases. The result is in Figure 9.

For FPTree, the latency of read can be as high as 15 µs, and the
latency of update is about 5 µs when contention is higher. The read
latency of RNTree is also high, about 6 µs. But its update latency
can be limited within 2 µs. For RNTree+DS, because of its dual slot
array, its read latency is below 1 µs. Thus, Figure 9 can indicate the
true property of three trees. RNTree has better update performance.
RNTree+DS hasmuch better read performance, with a little sacrifice
of update. FPTree performs poor for both operations.

6.3.3 Skewness. We also evaluate the performance for different
skewed workloads. Figure 10 shows the throughput of RNTree
and FPTree, using 8 threads with different Zipfian coefficients vary
from 0.5 to 0.99. Results with Zipfian coefficients of [0, 0.5) are
excluded because they have negligible contention and have similar
performance to Zipfian=0.5. We can find that when the Zipfian is
larger than 0.7, the performance of FPTree drops quickly. RNTree
is less sensitive to contention. RNTree can be up to 2.3× faster.

7 CONCLUSION
This paper presents RNTree, a scalable NVM-based B+tree. The
design of RNTree follows two principles. (1) it solves the trade-off
between persistent overhead and sorted leaf nodes by using hard-
ware transactional memory to increase the atomic-write size. (2)
By removing heavy persistent instructions from critical sections
and proposing a dual-slot design, the critical section is more effi-
cient. The scalability can then be improved. Our evaluation results
show that RNTree has 1.44×/4.2× better performance for single-
key-operation/scan in single-thread evaluation, and 2.3× better
performance in multi-thread evaluation.
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